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Abstract 

 Humans have a profound effect on fire regimes by increasing the frequency of 

ignitions. Although ignition is an integral component of understanding and predicting fire, to 

date fire models have not been able to isolate the ignition location, leading to inconsistent use 

of anthropogenic ignition proxies. Here, we identified fire ignitions from the Moderate 

Resolution Imaging Spectrometer (MODIS) burned area product (2000-2012) to create the 
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first remotely sensed, consistently derived, and regionally comprehensive fire ignition data 

set for the western United States. We quantified the spatial relationships between several 

anthropogenic land use/disturbance features and ignition for ecoregions within the study area, 

and used hierarchical partitioning to test how the anthropogenic predictors of fire ignition 

vary among ecoregions. The degree to which anthropogenic features predicted ignition varied 

considerably by ecoregion, with the strongest relationships found in the Marine West Coast 

Forest and North American Desert ecoregions. Similarly, the contribution of individual 

anthropogenic predictors varied greatly among ecoregions. Railroad corridors and 

agricultural presence tended to be the most important predictors of anthropogenic ignition 

while population density and roads were generally poor predictors. Although human 

population has often been used as a proxy for ignitions at global scales, it is less important at 

regional scales when more specific land uses (e.g., agriculture) can be identified. The 

variability of ignition predictors among ecoregions suggests that human activities have 

heterogeneous impacts in altering fire regimes within different vegetation types and 

geographies. 

 

Keywords: anthropogenic, fire, ignition, lightning,  MCD45A1, MODIS, remote sensing, 

western US 

 

Introduction 

 Although fire is a natural component of most ecosystems and pre-dates the evolution 

of hominids (Pyne, 1982; Bond & Keely 2005; Bond et al., 2005; Bowman et al., 2009) 

humans are altering fire dynamics worldwide (Stephens, 2005; Korontzi et al., 2006; 

Archibald et al., 2009, Bowman et al., 2011). Anthropogenic changes that influence the fire 

cycle include changing climate (Westerling et al., 2006, Littell et al., 2009), fire suppression 
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(Archibald et al., 2012)  fuel alteration via the introduction of agriculture and pasture and 

through the introduction of non-native grasses which increase fine fuels and connectivity 

(D'Antonio &Vitousek, 1992), and the addition of anthropogenic ignition sources (Cardille et 

al., 2001). Fire is an important regulator of ecosystems, influencing succession and vegetation 

assemblages at local scales and the distribution of biomes at global scales (Bond & Keely 

2005; Bond et al., 2005). Fire is also economically costly (Butry et al., 2001); the US spends 

over 1 billion USD per year in suppression costs alone (Abt et al., 2009). Because of these 

ecological and economic impacts, it is necessary to understand how humans have altered fire 

cycles. Here, we use a novel remote sensing approach to quantify anthropogenic impact on 

fire ignitions in seven western US ecoregions. 

 The western US is an ecologically diverse region that includes many species such as 

Douglas fir forest in the Pacific northwest pinyon juniper in the southwest, and ponderosa 

pine forest in the southwest and northern Rockies (Pyne, 1982; Keane et al., 2008; Dennison 

et al., 2014). Human activities are strongly altering western fire regimes. For example, 

increased fire frequency in forested systems in the last fifty years has been observed in the 

western US and has been partially attributed to rising regional temperatures and earlier spring 

snowmelt (Westerling et al., 2006, Dennison et al., 2014). Historical land use change also 

influences fire. Since the early 1900s, fire has been substantially reduced in many western US 

ecosystems via fire suppression (Pyne, 1982; Moore et al., 1999; Allen et al., 2002; 

Schoennagel et al., 2004). Suppression efforts resulted in an increase of fuels in certain 

ecosystems (e.g. Ponderosa pine ecosystems) as well as an initial decrease in fire occurrence 

(Marlon et al., 2012). Although these western US forested systems have species with 

adaptations to fire, altered frequency and severity of fires associated with climate and land 

use change can lead to different dominant species and overall changes in community 

composition (Keane et al., 2008).  
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 In addition to human impacts from climate and suppression, western US fire regimes 

have been impacted by the introduction of invasive plants. Non-native grasses, such as 

Bromus tectorum and Bromus rubens, are known to alter fire regimes by increasing fine fuels 

and fuel continuity (D'Antonio &Vitousek, 1992; Balch et al., 2013; Lambert et al., 2010). As 

invasive grasses continue to spread and human settlement near wildland areas increases 

(Theobald & Romme, 2007), ecosystems acoss western US, are increasing susceptible to fire. 

 Humans can alter fire ignitions intentionally or through accidental fire starts. People 

use fire intentionally for many purposes, including for land management (e.g. agriculture and 

pasture maintenance), and for ecosystem management (e.g. prescribed fires) (Pyne, 1982; 

Bowman et al., 2011). Some of these intended fires may escape and start wildfires. 

Unintended fire starts associated with people include smoking, railroad sparks, equipment 

use, and powerlines (The National Wildfire Coordinating Group Origin and Cause 

Determination Handbook, 2005). While some of these sources, such as campfire, debris 

burning, and arson, have obvious links to fire ignition, others are less intuitive. In the case of 

railroads, brake sparks and right of way track maintenance are known to cause fire ignition 

(Harrington & Donnelly, 1978), while extreme winds can knock down powerlines that may 

ignite fires (Tse & Fernandez-Pello, 1998).  

 Despite these strong relationships between humans and fire ignition, regional-scale 

spatial analyses of anthropogenic influences on fire ignition are lacking. Previous studies 

investigating the influence of humans on fire ignition have typically been at landscape scales  

(e.g., Vega-Garcia et al., 1995; Syphard et al., 2007; Arganaraz et al., 2015; Wu et al., 2014). 

Regional and global scale models of fire probability and human impact on fire have not 

empirically tested patterns of fire ignitions, but instead use spatial layers such as roads or 

human population density as proxies for human ignition pressure (Parisen et al., 2012; 

Hawbaker et al., 2013; Knorr et al., 2013). To date, both landscape and regional scale 
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analyses assume that the importance of different anthropogenic predictors of fire ignition is 

constant across space, and have not tested whether human influence on fire varies between 

ecosystems.  Anthropogenic ignitions can be controlled reasonably well by fire management, 

(Hawbaker et al., 2014), and therefore understanding the spatial patterns of anthropogenic 

fire ignitions may help with the prediction and mitigation of future fire risk.  

 While we know that anthropogenic ignition pressure vary globally (Pechony & 

Shindell, 2009), previous studies have used only roads and population density as proxies for 

anthropogenic ignition when predicting fire (Yang et al., 2007; Siljander, 2008). It is unlikely 

that human presence alone is consistently the best predictor of fire occurrence. Thus, a better 

understanding of how specific human activities relate to fire ignitions would improve spatial 

models of fire risk.  

 Here, we use a novel remote sensing approach to distinguish anthropogenic fire 

ignitions from lightning ignitions across the western US. We then quantify the spatial 

relationship between anthropogenic predictors and fire ignition within seven western US 

ecoregions to answer the following questions: 1) What is the relative importance of 

anthropogenic features for  predicting fire ignition in seven western US ecoregions?, and 2) 

How does the influence of anthropogenic features on fire ignition vary among western US 

ecoregions. This study presents the first regional-scale analysis of the spatial variability of 

human influence on fire ignitions.  

Methods 

Fire data  

 We used the Moderate Resolution Imaging Spectrometer (MODIS) Collection 5 

Burned Area Product (Roy et al., 2002, 2005, 2008) to identify ignition pixels. The MODIS 

Burned Area Product (MCD45A1), uses a bidirectional reflectance model-based change 

detection algorithm (Roy et al., 2005). Burned areas are distinguished at an approximate 
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500m resolution based on rapid changes in surface reflectance due to removal of vegetation, 

and subsequent deposition of charcoal and ash (Roy et al., 2005). Although the collection 6 

MODIS Burned Area Product (MCD64A1) demonstrates superior fire detection rates, 

particularly for infilling fire perimeters (Giglio et al., 2009), these data were not available at 

the time of the analysis. The locations of potential ignition pixels associated with the two 

products are likely to be similar. In addition to providing a spatial location for burned areas, 

MCD45A1 also assigns a Julian day to each burned pixel which signifies the date of fire 

detection. In areas with limited cloud cover, such as the western US during summer months, 

MCD45A1 has higher accuracy than in areas with higher levels of cloud cover (Boshetti et 

al., 2010). These daily data span January 1, 2000 through December 31, 2012 (except June 

2001 when there was an error in the fire detection instrument) for the eleven westernmost 

contiguous United States (Figure 1). We only considered fires that burned from May-October 

because this time frame is considered the typical fire season in the western US (Westerling et 

al., 2003). We retained ignitions associated with all land cover classes in the modelling 

analysis assuming that all ignitions have the potential to spread into wildland fires. We aimed 

to characterize the overall pattern of anthropogenic ignitions associated with all sources.   

Response Variables  

 The MCD45A1 product identifies burn dates for individual (~500 m) pixels, but does 

not identify unique fire perimeters. We grouped the burned pixels into unique fire perimeters 

based on spatial and temporal proximity. Pixels were considered part of the same fire event if 

they were within two days and two pixels of one another or within three days and adjacent. 

Temporal proximity was only considered when pixels burned in ascending order such that 

large fires that eventually merge would maintain unique perimeters and ignition points.  In 

some cases where large fires burned for multiple weeks, these criteria were not appropriate. 

For these complex fires, we grouped pixels into a single event if burned pixels were within 
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two pixels and there were no time gaps longer than three days during the entire event. After 

grouping all unique fire perimeters or complexes, we identified the earliest burn date. Pixels 

burning on the first day of multiday fires and all burned pixels in single date fires were 

identified as potential ignition pixels. Based on these criteria, a single fire event could have 

multiple potential ignition pixels. To test whether this biased our modeling results, we also 

averaged predictor variables (see below) for all ignition pixels in every unique fire event and 

repeated out analysis using only a single ignition per fire (Appendix S1). 

In order to isolate ignitions likely caused by anthropogenic activity, we excluded 

ignitions likely to have been caused by lightning. Cloud-to-ground lightning strikes were 

acquired from the Vaisala National Lightning Detection Network lightning density data from 

2000-2009 and the North American Precision Lightning Network from 2010-2012 to identify 

ignitions potentially attributable to lightning. These data included information on the location 

and timing of lightning strikes and have a reported median spatial accuracy of 500 m in the 

western US (Cummins & Mur, 2009) with over 95% of strikes having uncertainties in 

location of less than 4 km (Biagi et al., 2007). If an ignition pixel was within a 4-km radius 

and burned within three days after a lightning strike, it was considered a potential lightning 

ignition. We used a three day buffer as lightning ignitions can remain undetected by satellites 

for several days until weather conditions become conducive to fire spread. All other ignitions 

that were not spatially or temporally proximal to lightning strikes were assumed to originate 

from an anthropogenic source.  

Validation of Ignition Sources 

We used the Fire Program Analysis fire-occurrence database (FPA FOD; Short, 2015) 

to test the relative accuracy of the in anthropogenic vs. lightning ignition classification. The 

FPA FOD is a compilation of fires reported by federal, state and local agencies and 

encompasses the entire study period 2000-2012 (Short, 2015). The completeness and 
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accuracy of these records varies by state and reporting abilities, and, while extensive, is an 

incomplete record of all fire activity (Short, 2014). Therefore, a lack of corresponding 

ignition records between FPA FOD and MCD45A1 may be due to reporting errors in FPA 

FOD and not necessarily attribution errors in our method (Appendix S2). Nonetheless, as the 

only other ignition dataset available, the comparison provides an important initial estimate of 

MCD45A1 ignition accuracy. 

The goal of identifying lightning ignitions was to exclude them from the analysis, thus 

creating a clearer picture of anthropogenic ignition. In order to test our classification of 

lightning ignitions, we identified data points from the FPA FOD that overlapped with fire 

perimeters from the MCD45A1 data. The spatial and temporal accuracy of the FPA FOD 

dataset are unknown, and it is likely that some spatial and temporal errors exist (Short 2014). 

As such, we set a wide search window for overlap. Points and perimeters were considered 

overlapping if they were within 10 km spatially and burned within seven days temporally. 

The FPA FOD fire causes listed for each fire were then assigned to ignition points associated 

with that perimeter. Fires which had arson, railroad, power line, smoking, children, debris 

burning, structure, fireworks, campfire, equipment use, or miscellaneous listed as the cause 

were considered anthropogenic, while FPA FOD listed as lightning caused were considered 

lightning ignitions.   

Predictor Variables 

 We chose anthropogenic features potentially associated with wildfire ignitions based 

on fire causes listed in the National Wildfire Coordinating Group Cause and Determination 

Handbook (Table 1). We used the LandFire Existing Vegetation Type 120 (LANDFIRE, 

2008; Rollins, 2009) to determine presence or absence of agriculture in each 500m  ignition 

pixel. We chose to include ignition pixels that burned on agricultural land because 

agricultural fires are a potentially important component of anthropogenic ignitions across the 
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western US region. We used the USGS SAGEMAP Human Footprint data relating to roads, 

power lines, railroads, interstates, campgrounds, and population density (Leu et al., 2008). 

We calculated distance to roads, power lines, railroads, and interstates from the centroid of 

each pixel. If any of these features were present within the pixel, the distance value was set to 

zero. Campgrounds were treated as a binary variable denoting presence or absence in each 

pixel. We used the mean population density for each pixel to represent the population density 

for the entire pixel. Population density was log transformed to deal with outliers with large 

population sizes. 

 We used the SILVIS 2010 WUI (Wildland Urban Interface) standalone data to 

determine the percent of development within each pixel (Radeloff et al., 2005). Overall WUI 

development was calculated as the sum of high density interface, high density intermix, 

medium density interface, medium density intermix, low density interface, and low density 

intermix based on the WUICLASS10 designation.  

Modeling  

For each of the seven Omernik Level I Ecoregions in the western U.S. (Omernik, 

1987; Figure 2), we first modeled the presence/absence of ignitions as a function of the 

predictor variables using generalized additive models (GAMs) in the mgcv package (Wood, 

2011) in R version 3.1.2. Anthropogenic ignitions were treated as presence, while randomly 

selected unburned areas from 2000-2012 were treated as absence. Lightning ignitions and 

associated fires were excluded from analysis. We calculated the generalized variance 

inflation factors (GVIF) (Fox & Monette, 1992) for predictor variables separately in each 

ecoregion to test for multicollinearity. We removed variables with GVIF values above 3 to 

avoid violations of multicollinearity. The campground predictor was removed from analysis 

because there were too few observations to create an effective model. The GAMs were used 

to explore the relationship between predictor and response variables, for variable selection 
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and to identify type of relationship (e.g., linear, quadratic). Based on the predictor variables 

and relationships identified in the GAM analysis, we then used  generalized linear models 

(GLMs) to identify the relative contribution of predictors within each ecoregion.If a variable 

was best modeled with a quadratic or cubic polynomial based on the relationship displayed in 

the ecoregion GAM, we kept all lower order forms (linear, or quadratic and linear, 

respectively) of that variable in the GLM analysis. This resulted in first, second, and third 

order polynomials in the construction of ecoregion GLMs. We performed backward stepwise 

selection for each ecoregion model until there were 12 (the maximum allowable in the 

hier.part package) or fewer variables and selected the GLMs with the lowest Akaike 

Information Criteria (AIC) value.  

We tested the relative importance of each anthropogenic predictor, using hierarchical 

partitioning (Chevan & Sutherland, 1991) to determine the independent model contribution 

for each variable included in the GLM. Hierarchical partitioning was done in R using the 

hier.part package (Walsh & MacNally, 2003). To find the independent model contribution of 

each variable, we summed the percent model contribution of each term containing the 

variable.  A variable with a quadratic and linear term would count as two terms in the 12 term 

limit. We assessed each model fit by calculating the deviance explained by the model. We 

tested the direction of the relationship for the top two predictors with anthropogenic ignition 

in each ecoregion using both a linear regression and loess smoother. We also tested the 

direction and strength of the relationship for the top two predictors using only anthropogenic 

ignitions confirmed by the FPA FOD data (Appendix S2).    

Results 

We identified 47,495 unique fire events in the western US from 2000-2012, with a 

total of 129,332 potential ignition pixels (fire events often had multiple pixels burning on the 

first day; Appendix S1). Of these ignition pixels, the vast majority (90%) occurred in the 
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May-October time frame and were included in this analysis (Figure 2). 26,402 ignitions 

(23%) were identified as potentially caused by lightning based on the three day and four 

kilometer criteria, leaving a total of 90,278 ignition pixels likely attributable to anthropogenic 

sources. Pixels that burned exclusively on agricultural land made up a minimal (<2%) 

number of ignition pixels in all ecoregions except in the Marine West Coast Forest where 

they made up 6.6%. The total number of anthropogenic and lightning ignitions varied among 

ecoregions. The most anthropogenic ignitions occurred in the North American Desert and 

Mediterranean California ecoregions, and the fewest occurred in the Southern Semiarid 

Highlands and Temperate Sierra ecoregions (Table 2).  

Of the 116,680 total potential ignition sources in the May-October time frame, a total 

of 13,170 aligned with the FPA FOD fire database when ignitions with unknown sources 

were excluded from analysis. This low overlap rate could reflect differences in fire size and 

detection likelihood. The FPA FOD fire database identifies all fires that were treated (and 

often extinguished) by government agencies, while MCD45A1 identifies burned area 

detectable within at least one 500 m pixel, likely including fires not reported in agency 

databases (e.g. agricultural fires that did not require agency response). Of the ignitions in the 

overlapping subset, we identified 4,093 as lightning, 83% of which were confirmed by the 

FPA FOD. Of the remaining ignitions, 4,372, or 48% were confirmed by the FPA FOD as 

anthropogenic (Table 3).  

These confirmation rates match our initial goal of including all anthropogenic and 

potentially anthropogenic ignitions in our dataset. However, we repeated our modeling 

analyses (see below) using only the confirmed anthropogenic ignitions and found very similar 

results, suggesting that our analysis is robust to the potential inclusion of some percentage of 

lighting ignitions (Appendix S2).  
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There was substantial variability in the deviance explained by each ecoregion model. 

The ecoregion GLMs used for hierarchical partitioning are less flexible and therefore explain 

less than ecoregion GAMs, however, they still perform comparably for the majority of 

ecoregions (Table 4). The best model GLMs based on deviance explained were in the Marine 

West Coast Forest (69.2%) and North American Desert (28.6%), whereas anthropogenic 

predictors only explained 5.4% of the spatial pattern of ignition in the Great Plains (Table 4). 

For most ecoregions, the GLMs performed similarly to the GAMs in terms of overall 

deviance explained, suggesting that relationships between anthropogenic predictors and 

ignition are reasonably well explained with linear, quadratic, or cubic functions. 

After using model selection criterion, all predictor variables were retained in all 

ecoregion GLMs except for the Southern Semiarid Highlands and Temperate Sierras where 

powerlines, and powerlines/ agriculture, respectively were excluded (Table 5, Appendix S3). 

The polynomial term used to include predictors varied among ecoregions, but was most 

commonly linear or quadratic. The 12 variable maximum allowed in the hier.part package 

only affected the GLM created for the Great Plains ecoregion. 

Model contribution from each predictor varied substantially among ecoregions. 

Proximity to railroads was the most consistently important predictor, with the highest or 

second highest model contribution in all ecoregions except for in the Great Plains and 

Mediterranean California. Agricultural presence had the highest model contribution in the 

Marine West Coast Forest (45%) and Northwest Forested Mountains (41%). Presence of 

wildland urban interface had the highest model contribution in the Southern Semiarid 

Highlands (39%) and Mediterranean California (36%). The most important predictor of 

anthropogenic ignition was different for the remaining three ecoregions with distance to 

railroad in the North American Desert (36%), distance to road in the Temperate Sierras 

(57%) and distance to interstate in the Great Plains (35%; Figure 4). Relative contributions of 
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predictor variables for models run with a single ignition per fire event were largely the same 

in each ecoregion (Appendix S1).  

If anthropogenic features are indeed influencing fire ignitions, we expect their 

relationships to have a predictable directionality. For example, anthropogenic ignition should 

decrease with distance to roads, resulting in a negative relationship. In contrast, 

anthropogenic ignition should increase with higher wildland urban interface (i.e. more urban 

areas within wildlands), resulting in a positive relationship. This is the case for the top 

predictors in the regions with the highest explanatory power: Marine West Coast Forest, 

North American Desert, Northwest Forested Mountains, and Mediterranean California 

ecoregions. (Figure 5, A-D). However, the expected relationships are not evident in the 

regions with the lowest explanatory power (Temperate Sierras, Southern Semiarid Highlands, 

and Great Plains; Figure 5, E-G).  

Discussion 

 Our analysis reveals strong spatial variability in the relationship between human land 

use and anthropogenic fire ignitions. This variability in anthropogenic influence suggests that 

humans impact ignition differently across ecoregions due to interactions with climate and 

land cover, and spatial variation in human land use across regions (Littell et al., 2009; 

Archibald et al., 2009; Marlon et al., 2012). For example, environments with wetter, larger 

fuels and humid weather would be less likely to carry a spark that results in ignition than 

those with dry, fine fuels and frequent fire weather. They would also be more fire limited as a 

consequence of shorter-lived fire potential through the season. In addition, human impact on 

the landscape varies among ecoregions (Leu et al., 2008). The results of this study underscore 

the complexity of the interplay between humans, climate, and fuels and their relationship 

with fire ignition across the western US.  Given the considerable variation in the relationship 
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between anthropogenic influence and fire ignitions across broad ecoregions, it is likely that 

the similar variance will also be evident at landscape scales. 

 In the Marine West Coast Forest, agricultural presence was the best predictor of 

anthropogenic fire with an independent model contribution of 45%, suggesting that human 

agricultural practices in this region are strongly linked to fire ignition. While many regions 

contain agricultural areas, variation in crop types and agricultural burn calendars impact the 

patterns of agricultural influence on the landscape (Korontzi et al., 2006). For example, the 

Marine West Coast Forest consists largely of the Willamette Valley region, which has a long 

history of grass seed production beginning with rye grass and turf grass in 1935 (Conklin & 

Fisher 1973). In order to prevent the spread of disease, and to remove agricultural residue 

which can inhibit future growth, fire is used as a regular management tool (Conklin & Fisher 

1973; Hardison 1980). It is likely that the heavy use of fire to manage these grass crop 

systems contributes to the high influence of agriculture on fire ignition in the Marine West 

Coast Forest.  

 Although the practice of agriculture burning is not restricted to Willamette Valley 

(McCarty et al., 2009), agricultural presence did not have a high model contribution in any of 

the remaining ecoregions except for the Northwest Forested Mountains, where post-harvest 

burning of wheat crops may be responsible. This may be due to the unique climate in the 

Marine West Coast Forest, which is one of the wettest in North America (Commission for 

Environmental Cooperation, 1997). In this wet area, it may be necessary to have a hotter and 

more intentional ignition source, such as crop residue burning, for successful ignition. 

However, in more arid regions, less powerful sources of ignition may be enough to ignite 

fuels. For example, cigarette butts require relative humidity levels below 22% for fire ignition 

(National Wildfire Coordinating Group, 2005), and would be more likely to start a fire in arid 
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regions such as the North American Desert where distance to interstate (and associated 

cigarettes and automotive sparks) is an important predictor of ignitions.  

 Another important predictor in the North American Desert, characterized in part by a 

desert steppe climate (Commission for Environmental Cooperation, 1995), is distance to 

railroad, with a total model contribution of 39%. The dry climate in this region likely 

encourages fire spread from railroad ignitions attributed to brake sparks and track 

maintenance (Harrington & Donnelly 1978; National Wildfire Coordinating Group, 2005), 

whereas these sparks would be less likely to ignite larger, wetter fuel sources. Another 

potential reason why railroads are such a strong predictor of fire ignition in this ecoregion is 

because of their association with cheatgrass (Bromus tectorum), which was originally 

introduced in the west via railroad lines (Knapp, 1996). Cheatgrass is a fire prone invasive 

species (D'Antonio & Vitousek, 1992) that has been shown to increase the fire activity in 

invaded areas (Balch et al., 2013). Although cheatgrass is widespread in the west, it is most 

dominant in the Great Basin region, covering 40,000 km2 (Bradley & Mustard, 2005), which 

makes up a large portion of the North American Desert ecoregion. In this region, the 

distinctive combination of arid climate and fire prone fine fuels in close proximity to an 

ignition source likely contribute to the unique contribution of railroads to overall 

anthropogenic ignition in the North American Desert.  

 Although population density is often used as a proxy for human ignition (Cardille et 

al., 2001; Syphard et al., 2007; Hawbaker et al., 2014), in our western US study, it was a poor 

predictor. (The only notable influence was in Mediterranean California.) At global scales, 

spatial population density is more widely available and likely provides a reasonable proxy for 

other anthropogenic land use features. However, the low contribution of population density in 

most western US ecoregion models suggests that human use of the landscape has a greater 
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impact on fire ignition than just the number of people per square kilometer. This 

understanding will enhance our ability to include human variables in predictive fire models. 

 In Mediterranean California, where population density was an important predictor of 

ignition, it showed a negative monotonic relationship with anthropogenic fire ignition (e.g. 

Figure 5d). In contrast, previous work suggests fire density is highest at intermediate levels of 

population density (Syphard et al., 2007; Archibald et al., 2009). An association with 

intermediate population densities could be due to increased levels of fire detection and 

suppression, as well as more fuel breaks in highly populated areas, and a lack of 

anthropogenic ignition sources in sparsely populated areas (Guyette et al., 2002; Syphard et 

al., 2007). However, fire frequency has also been found to have a negative relationship with 

population density regionally, for example in the Missouri Ozarks (Guyette et al., 2002), and 

globally (Knorr et al., 2014). Our results for the Mediterranean California ecoregion model 

are consistent with Guyette et al., 2002 and Knorr et al., 2014. It is likely that fires throughout 

the heavily populated Mediterranean California are quickly suppressed, before becoming 

detectable by MODIS, because they pose a threat to people and infrastructure.  

Human impact (Sanderson et al., 2002) and ignition pressure (Pechony & Shindell, 

2009) are not homogenous across the globe. Therefore, how anthropogenic ignitions vary 

must be accounted for when predicting fires. Currently, predictive fire models typically rely 

on population density as a proxy for anthropogenic ignition (Yang et al., 2007; Siljander, 

2008, Pecnony & Shindell, 2009), and do not consider regional differences in ignition 

pressure. We suggest that regional differences in fire ignition should be taken into account 

when creating regional and global fire models. For example, more specific measures of 

human activity, such as railroads and interstates, should be tested where available, when 

determining the best proxy for anthropogenic ignition in fire models. However, population 

density is included in each ecoregion model despite its generally low overall model 
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contribution. Therefore it may be used to improve predictive fire models when more specific 

spatial information is unavailable. 

The variation in anthropogenic influence on fire ignition across ecoregions shown in 

this study emphasizes that human presence alone is not the best predictor of ignitions. Rather, 

human use of the landscape, likely combined with flammability of surrounding vegetation 

influences regional patterns of fire ignition. This is the first study to address how human 

drivers of ignition vary by ecoregion using a remote sensing approach. By better 

understanding how humans influence ignition, and how humans interact with regionally 

varying climate and fuels, we can more accurately include anthropogenic variables in 

predictive fire models.  
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Data associated with this paper have been deposited in ScholarWorks@UMassAmherst. 

Anthropogenic ignitions data: http://dx.doi.org/10.7275/R56W9803  

Ignition cause data: http://dx.doi.org/10.7275/R5348H8P 

 

 

Table 1: Predictor data layers used in this analysis are associated with one or more of the 

wildfire causes listed in the National Wildfire Coordinating Group Origin and Cause 

Determination Handbook.  

Data Layer Data Source 
National Wildfire Coordinating 
Group Ignition Cause Category 

Lightning Vaisala NLDN Lightning 

Roads/ Interstates SAGEMAP (Leu et. al., 2008) Smoking, Arson, Equipment Use 

Powerlines SAGEMAP (Leu et. al., 2008) Powerlines 

Railroads SAGEMAP (Leu et. al., 2008) Railroads, Arson, Equipment Use 

Campgrounds SAGEMAP (Leu et. al., 2008) Campfire 

Wildland urban interface/ 

Population 

SILVIS/ SAGEMAP (Radeloff 
et al.,2005; Leu et al, 2008) 

Smoking, Arson, Children, Fireworks, 
Cutting, Welding 

Vegetation Type LANDFIRE Agriculture 
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Table 2: The total number of lightning and anthropogenic ignitions in each of the seven 

western US ecoregions. Ignitions not analyzed occurred outside of the May-October window 

of each year.  

 

Ecoregion Lightning Anthropogenic
Total 
Ignitions 

Anthropogenic 
Ignitions/km2 

Great Plains 36% 64% 9283 0.01 

Marine West Coast Forest 17% 83% 10620 0.11 

Mediterranean California 7% 93% 18582 0.10 

North American Desert 26% 74% 60660 0.03 

Northwestern Forested Mountain 20% 80% 14977 0.01 

Southern Semiarid Highlands 20% 80% 776 0.01 

Temperate Sierras 42% 58% 1782 0.01 

All Ecoregions 23% 77% 116680 0.03 

Ignitions Not Analyzed     12652
 

 

Table 3: MODIS Burned Area Product (MCD445A1) ignitions that overlapped with the Fire 

Program Analysis fire occurrence database (FPA FOD) data set were used to validate 

attribution of lightning as an ignition source. Using our method, we correctly identified 81% 

of our lightning ignitions that corresponded to a fire in the FPA FOD data set.  

 

MCD45A1 
Anthropogenic Lightning 

FPA 
FOD 

Anthropogenic 4372 703 5075 

 

 
Lightning 

 
4705 3390 8095 

  
9077 4093 

13170 Total 
Overlap 

  
48% confirmed 
anthropogenic 83% confirmed lightning  
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Table 4: The deviance explained by the best generalized linear model (GLM) varied by 

ecoregion but was comparable to the deviance explained by the general additive model 

(GAM) with the same variables for each region.  

Ecoregion 
Deviance 
Explained (GLM) 

Deviance 
Explained (GAM) 

Marine West Coast Forest 69.2% 74.0% 

North American Desert 28.6% 30.2% 

Northwest Forested Mountains 17.0% 20.1% 

Mediterranean California 15.8% 18.5% 

Temperate Sierras 8.2% 16.7% 

Southern Semiarid Highlands 8.2% 10.5% 

Great Plains 5.4% 6.8% 
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Table 5: After testing for multicollinearity, the remaining predictor variables were used to 

create ecoregion GLMs. The number in the table indicates the order of polynomial used for  

each predictor in each ecoregion, which ranged from first to third order. 

 

Figure 1: The study area is composed of the eleven westernmost contiguous US states. 

Burned (a) and ignition (b) pixels were determined using the MODIS Burned Area Product 

(MCD45A1).  

 

Figure 2: Fire ignitions are distributed throughout the western US. For all ignitions that 

occurred from May-October 2000-2012, we determined whether the ignition had an 

anthropogenic (a) or lightning (b) source using data from Vaisala National Lightning 

Detection Network. The distribution of anthropogenic ignitions varied between ecoregions 

(c). The ecoregions are abbreviated as follows: MWF= Marine West Coast Forest, NAD= 

North American Desert, MC= Mediterranean California, TS= Temperate Sierras, SSH- 

Southern Semiarid Highlands, GP= Great Plains, NFM= Northwest Forested Mountains. 

 

Figure 3: The percent of MODIS (MCD45A1) lightning ignitions that were confirmed by the 

Fire Program Analysis fire occurrence database FPA FOD data varied among ecoregions, but 

Predictor Variables Modeled by Ecoregion 

Ecoregion Road Interstate Powerline Railroad WUI Log Pop Agriculture 
Southern Semiarid 

Highlands 
2 1 

 
1 1 1 1 

Temperate Sierras 3 2 3 1 1 
Mediterranean 

California 
2 2 2 2 1 2 1 

Marine West Coast 
Forest 

1 2 2 1 1 2 1 

Northwest Forested 
Mountains 

2 2 2 3 1 1 1 

Great Plains 2 3 2 1 1 2 1 
North American  

Desert 
1 2 1 3 1 2 1 
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averaged 83%. The average number of confirmed anthropogenic ignitions per region was 

48%. We correctly identified lightning ignitions above a rate of 75% for five out of the seven 

ecoregions, with the lowest accuracy in the Marine West Coast Forest and Mediterranean 

California.  

 

Figure 4: The top anthropogenic predictors of anthropogenic ignition varied widely between 

ecoregions. Pie charts show the independent model contribution of each predictor variable for 

the best ecoregion model. *Negative values show that the variable acts as a suppressor of 

other model variables, meaning that it is not a great predictor itself, but suppresses the 

residual error of the model. 

 

Figure 5: The relationship of the two best model predictors and anthropogenic ignition are 

shown for each ecoregion. These relationships are in the expected direction in the four 

ecoregions with the highest explanatory power (a-d), but are counter intuitive in the three 

ecoregions with poor explanatory power (e-g). The black line denotes a linear relationship, 

while the gray line shows the loess smoother. 
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